ORIGINAL PAPER

The Co-luminescence Effect of Eu–Gd–Ofloxacin–SDBS System and its Analytical Application

Feng Wang · Wei Huang · Yong Hou · Zhenni Xu

Received: 7 July 2006 / Accepted: 3 October 2006 / Published online: 12 December 2006 © Springer Science+Business Media, LLC 2007

Abstract A fluorescence enhancement phenomenon in the europium (Eu)–Ofloxacin (OF)–Sodium Dodecyl Benzene Sulfonate (SDBS) fluorescence system was observed when Gd³⁺ was added. The fluorescence intensity of the systems was measured ($\lambda_{ex}/\lambda_{em} = 280/612$ nm) at pH 7.8. Under optimum conditions, a linear relationship between the enhanced fluorescence intensity and the Eu³⁺ concentration in the range of $5.0 \times 10^{-10} \sim 2.0 \times 10^{-7}$ mol·L⁻¹ was observed. The detection limit of Eu³⁺ was 1.46 × 10^{-10} mol·L⁻¹ (S/N = 3). This method was used for the determination of trace amounts of europium in synthetic rare earth samples with satisfactory results. In addition, the interaction mechanism is also studied.

Keywords Co-luminescence · Europium · Ofloxacin · Energy transfers

Introduction

Rare earth (RE) elements play a significant role in material science, catalysis, medicine, and life science. It is important to determine traceamounts of rare earth elements. Owing to the fluorimetry of rare earth elements they possess high sensitivity and good selectivity. Studying on a fluorescence enhancement or co-luminescence the effects of their multicomplex systems have been of interest for a long time [1-3]. This enhancement effect has been used for the determination of ultratrace amounts of RE ions; the fluorescence intensity of the systems could be increased by several orders of

F. Wang (⊠) · W. Huang · Y. Hou · Z. Xu Department of Chemistry, Zaozhuang University, Shandong 277160, P.R. China e-mail: wf332@uzz.edu.cn magnitude. Previously, studies on fluorescence enhancement systems focused on β -diketone complexes [4–8], only a few non- β -diketone [9, 10] has been studied.

In this paper, we found a new fluorescence enhancement system of Eu^{3+} – Gd^{3+} –Ofloxacin(OF)–SDBS which caused by a non- β -diketone ligand ofloxacin. The structure of ofloxacin {9-fluoro-2, 3-dihydro-3-methyl-10-(-methyl-1-piperzinyl)-7-oxo-7H-pyrido-[1,2,3-de]1,4-bonzoxazine-6-carboxylic acid} is shown as following:

Ofloxacin is a synthetic fluoroquinolone derivative, which has demonstrated broad-spectrum activity against many pathogenic gram-negative and gram-positive bacteria. The bactericidal action of OF results from interference with enzyme DNA gyrase that is needed for the synthesis of bacterial DNA [11, 12].

In the system of Eu^{3+} – Gd^{3+} –Ofloxacin–SDBS, the Eu^{3+} could combine with OF to form complexes in the presence of SDBS and character the fluorescence of Eu^{3+} which can be increased by the addition of Gd^{3+} . The formation condition and the factors affecting the Eu–Gd–Ofloxacin–SDBS system were studied. This is a newly found fluorescence enhancement system of RE ion and can be used for the determination of ultra trace amounts of Eu^{3+} . Furthermore, this method is simple, high sensitive and good stability. In

addition, the luminescence mechanism of the system was discussed.

Experimental

Apparatus

All fluorescence intensities were made on a F-2500 spectrofluorimeter (Hitachi, Japan). All pH measurements were made with a pHS-2F meter (Leici, Shanghai). All absorbance spectra are recorded with UV-2401spectrophotometer (Shimadzu, Japan).

Reagents

Stock standard solutions of rare earth ions (Eu³⁺ and Gd³⁺) $(1.00 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1})$ was prepared by dissolving the corresponding oxides (99.9%, China National Medicines Corporation, Ltd. Shanghai) in hydrochloric acid and heating until nearly dry, then diluting with doubly distilled water.

Stock solution of Ofloxacin (OF) $(1.00 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1})$ was prepared by dissolving the appropriate amount of OF with water.

A 0.1 mol \cdot L⁻¹ Tris-HCl buffer was prepared by dissolving of 6.06 g Tris in 500 mL volumetric flask with water and adjusting the pH to 7.8 with HCl.

Stock solution of SDBS $(1.00 \times 10^{-2} \text{ mol} \cdot \text{L}^{-1})$ was prepared by dissolving the appropriate amount of SDBS with doubly distilled water.

All the chemicals used were of analytical grade and doubly distilled water was used throughout.

Procedure

To a 10 mL test tube, buffer solution, Eu^{3+} , Gd^{3+} , OF and SDBS were added in that order. The mixture was diluted to 10 mL with distilled water and allowed to stand for 20 min. The fluorescence intensity of Eu^{3+} was measured in a 1 cm quartz cell with excitation and emission wavelengths of 280 nm and 612 nm, respectively. The excitation and emission slits were both 10 nm.

Results and discussion

Fluorescence spectral

Fig. 1 Excitation spectra ($\lambda_{em} = 612 \text{ nm}$) **a** and emission spectra ($\lambda_{ex} = 280 \text{ nm}$) **b**. (1) Eu³⁺–Gd³⁺–OF–SDBS; (2) Eu³⁺–Gd³⁺–OF; (3) Eu³⁺–OF; (4) Eu³⁺–SDBS; (5) Eu³⁺. Conditions: pH = 7.8; OF: 7 × 10⁻⁵ mol·L⁻¹; SDBS: 3.6 × 10⁻⁴ mol·L⁻¹; Gd³⁺: 1.8 × 10⁻⁶ mol·L⁻¹; Eu³⁺: 1.0 × 10⁻⁷ mol·L⁻¹

enhanced in the system of Eu^{3+} – Gd^{3+} –OF–SDBS. The excitation wavelength is located at 280 nm, the Eu^{3+} – Gd^{3+} –OF–SDBS system can emit intrinsic emission peaks of Eu^{3+} appeared at 612 nm, corresponding to the ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ transitions of Eu^{3+} . So, the emission wavelength of 612 nm was selected for the further experiment.

Optimization of the general procedure

Effects of pH

Figure 2 shows the effect of pH on the fluorescence intensity of the system. The maximum fluorescence intensity obtained in the range of pH 7.0–8.5. In this paper, the Tris–HCl buffer for pH = 7.8 was chosen for assay and the optimum volume of buffer is 1.0 mL.

Fig. 2 The effect of pH on the fluorescence intensity. Conditions: OF: $7 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1}$; SDBS: $3.6 \times 10^{-4} \text{ mol} \cdot \text{L}^{-1}$; Gd^{3+} : $1.8 \times 10^{-6} \text{ mol} \cdot \text{L}^{-1}$; Eu^{3+} : $1.0 \times 10^{-7} \text{ mol} \cdot \text{L}^{-1}$

Effect of surfactants and its concentrations

Different kinds of surfactants have different effects on the fluorescence intensity of the system. Some cationic surfactants CTAB, CPB and nonionic surfactant TX-100 have little affect on the system but some anionic surfactants SDS and SDBS could obviously increase the fluorescence intensity of the system. The test indicates that SDBS is the best in the surfactants studied. So, SDBS was selected for further experiments. The effect of its concentration on the fluorescence intensity is shown in Fig. 3. The maximum fluorescence intensity is obtained at 3.6×10^{-4} mol·L⁻¹ of SDBS.

Effect of Gd^{3+} concentration

With the change in the concentration of Gd^{3+} , the corresponding change of fluorescence intensity of this system is shown in Fig. 4. It can be seen that the fluorescence inten-

Fig. 3 The effect of the concentration of SDBS on the fluorescence intensity. Conditions: pH = 7.8; OF: $7 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1}$; Gd³⁺: $1.8 \times 10^{-6} \text{ mol} \cdot \text{L}^{-1}$; Eu³⁺: $1.0 \times 10^{-7} \text{ mol} \cdot \text{L}^{-1}$

Fig. 4 The effect of the concentration of Gd³⁺ on the fluorescence intensity. Conditions: pH = 7.8; OF: $7 \times 10^{-5} \text{ mol} \cdot \text{L}^{-1}$; SDBS: $3.6 \times 10^{-4} \text{ mol} \cdot \text{L}^{-1}$; Eu³⁺: $1.0 \times 10^{-7} \text{ mol} \cdot \text{L}^{-1}$

sity enhanced to a maximum at the concentration of Gd^{3+} is $1.8 \times 10^{-6} \text{ mol} \cdot L^{-1}$. So, in this paper, the concentration of Gd^{3+} for study is chosen as $1.8 \times 10^{-6} \text{ mol} \cdot L^{-1}$.

Effect of OF concentration

Effect of the OF concentration on the fluorescence intensity is shown in Fig. 5. The maximum fluorescence intensity is obtained at the concentration of 7.0–8.0 $\times 10^{-5}$ mol \cdot L⁻¹ OF. So the concentration of OF is fixed at 7.0 $\times 10^{-5}$ mol \cdot L⁻¹ in further experiments.

The addition order and stability of this system

Under the optimum condition, the effect of time on the fluorescence intensity was studied. The result showed that

Fig. 5 The effect of the concentration of OF on the fluorescence intensity. Conditions: pH = 7.8; SDBS: $3.6 \times 10^{-4} \text{ mol} \cdot \text{L}^{-1}$; Gd³⁺: $1.8 \times 10^{-6} \text{ mol} \cdot \text{L}^{-1}$; Eu³⁺: $1.0 \times 10^{-7} \text{ mol} \cdot \text{L}^{-1}$

Deringer

Note. Conditions: pH = 7.8; $OF: 7 \times 10^{-5} \text{ mol} \cdot L^{-1}$; SDBS: $3.6 \times 10^{-4} \text{ mol} \cdot L^{-1}$; $Gd^{3+}: 1.8 \times 10^{-6} \text{ mol} \cdot L^{-1}$; $Eu^{3+}: 1.0 \times 10^{-7} \text{ mol} \cdot L^{-1}$

 $^{a}10^{-8} \text{ g} \cdot \text{mL}^{-1}$.

Foreign substances	Concentration $(10^{-9} \text{ mol} \cdot \text{L}^{-1})$	$\Delta I_{\rm f}~(\%)$	Foreign substances	Concentration $(10^{-9} \text{ mol} \cdot \text{L}^{-1})$	$\Delta I_{\rm f}~(\%)$
K ⁺ , Cl ⁻	20	0.91	Sm ³⁺	30	4.8
NH_4^+, Cl^-	20	-0.1	Tb^{3+}	8	3.20
Zn^{2+}, Cl^{-}	40	1.4	Dy ³⁺	3	4.56
Mn^{2+} , SO_4^{2-}	160	2.9	Tm ³⁺	2	3.46
Na^{+}, SO_{4}^{2-}	20	-0.07	Er ³⁺	5	4.76
K^{+}, NO_{3}^{-}	20	-1.98	Sc^{3+}	4	4.60
Ca^{2+}, Cl^{-}	20	-4.1	Nd ³⁺	2	5.20
Mg^{2+}, SO_4^{2-}	20	-2.17	Lu ³⁺	5	3.98
Fe ³⁺ , SO ₄ ²⁻	20	5.7	Gd^{3+}	25	4.24
Fe ²⁺ , SO ₄ ²⁻	60	2.7	La ³⁺	20	2.86
Y^{3+}	20	5.4	Dy ³⁺	100	3.81

the fluorescence intensity reached a maximum after all the reagents had been added and remained stable for over 1 h. Therefore, this system exhibits good stability.

Effect of foreign substances

The interference of foreign substances was tested at the concentration of Eu³⁺ is 8.0 × 10⁻¹⁰ mol \cdot L⁻¹ and the results are shown in Table 1. It was found that most of metal ions and other lanthanides had little effect on the determination of Eu, under the permission of ±5% relative errors.

Analytical application

The calibration graph and detection limit

Under the optimum condition defined, the calibration graphs for Eu³⁺ are obtained and showed in Table 2. It can be seen that there is a linear relationship between the fluorescence intensity of the system and the concentration of Eu³⁺ in the range of 5.0×10^{-10} to 2.0×10^{-7} mol·L⁻¹, and the detection limit is 1.46×10^{-10} mol·L⁻¹.

Determination of synthetic sample

Because of the effects of other lanthanide ions on the fluorescence intensity of the system, the standard addition method is used for the determination of Eu^{3+} in samples. A synthetic sample, prepared based on the interference of foreign substances (Table 3) was analyzed. As Table 3 shows, the results are reproducible and reliable. It can be seen that the proposed method is suitable for the determination of trace amount of Eu^{3+} . Interaction mechanism of the system

Formation of Eu³⁺-Gd³⁺-OF-SDBS complex

From Figure 1, it can be seen that when Gd^{3+} , OF and SDBS are together added to Eu^{3+} , the fluorescence intensity of the system is greatly enhanced. This indicates that there is the interaction among Gd^{3+} , OF, SDBS and Eu^{3+} .

The turbidity measurement shows that OF-SDBS solution remained transparent at the studied concentration. Particles are too small to produce strong light scattering. When Eu^{3+} is added into the system, the solution remains transparent, too. Once Gd³⁺ is added sequentially, it is found that the solution appears cloudy like diluted milk. This means that the larger complex particles are formed. RLS technique is available to provide some insight into the process responsible for the formation of the complex, which is shown in Fig. 6. It can be seen that RLS intensity is obviously enhanced when Eu³⁺ or Gd³⁺ are added into OF–SDBS system, indicating that Eu³⁺, Gd³⁺ is effective in binding cations to form the complex with OF-SDBS due to the similar chemical properties of all lanthanide elements. As the concentration of Gd^{3+} is higher than that of Eu^{3+} and the number of whole complexes is increased, which causes Gd³⁺-OF-SDBS the higher enhanced RLS intensity. From Fig. 6, it also can be seen that the intensity of RLS is greatly enhanced when Gd³⁺ is added compared to that of Eu³⁺–OF–SDBS. This indicates that there exists a large congeries in Eu³⁺-Gd³⁺-OF-SDBS system. In order to predigest the discussion to understand it easily, we hypothesize that there are two complexes (Eu³⁺-OF-SDBS and Gd³⁺-OF-SDBS). The two complexes are in close proximity in the system, because SDBS possesses the tendency to self-assemble as pre-micelle

tical parameters	Linear regression equation	Linear range $(mol \cdot L^{-1})$	Correlation coefficient <i>r</i>	Limit of detection $(mol \cdot L^{-1})$
	$I = 144.3 + 1.332 \times 10^{10} \mathrm{C}$	5.0×10^{-10} - 2.0×10^{-7}	0.9974	1.46×10^{-10}

Table 2Analyof this method

Table 3Determination of Eu^{3+} in the sample

Added (%)	Environment (Oxides Presence, weigh %)	Found (%)	$\mathrm{RSD}(\%)(n=5)$	Recovery (%)
Eu 0.25	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	0.256	2.42	102.4

or micelles. Self-aggregation of anionic surfactants SDBS shortened the distance between these two ternary complexes and there are large numbers of Gd³⁺ complexes around Eu³⁺ complexes.

The energy transfer of the systems

Figure 7 shows that when excited at 280 nm, the emission peak of OF in the presence of SDBS is at 453 nm. When Eu^{3+} is added into OF–SDBS system, the latter's fluorescence decreased and the characteristic fluorescence peak of Eu^{3+} at 612 nm increased, indicating that the intra molecular energy transfer is happening from OF–SDBS to Eu^{3+} . Furthermore, the fluorescence intensity of Eu^{3+} can be greatly enhanced near 1000 times in the complex of Eu^{3+} –OF–SDBS.

In order to know more details about this transfer, the energy transfer efficiency (E_a) and the interaction distance (r) between donor and acceptor can be evaluated using Förster theory [13, 14]:

$$E_a = 1 - \frac{I_{da}}{I_d} = \frac{R_0^6}{R_0^6 + r^6} \tag{1}$$

Fig. 6 RLS spectra of the system. (1) Eu³⁺–Gd³⁺–OF–SDBS; (2) Gd³⁺–OF–SDBS; (3) Eu³⁺–OF–SDBS; (4) OF–SDBS. Conditions: pH = 7.8; OF: 7 × 10⁻⁵ mol·L⁻¹; SDBS: 3.6 × 10⁻⁴ mol·L⁻¹; Gd³⁺: 1.8 × 10⁻⁶ mol·L⁻¹; Eu³⁺: 1.0 × 10⁻⁷ mol·L⁻¹

$$R_{\rm o}^6 = 8.8 \times 10^{-25} \cdot k^2 \cdot n^{-4} \cdot \phi_{\rm d} \cdot J \tag{2}$$

$$J = \int_0^\infty F(\lambda)\varepsilon(\lambda)\lambda^4 d\lambda / \int_0^\infty F(\lambda)d\lambda$$
(3)

where, R_0 is the critical transfer radius at which half of the energy is transferred; I_{da} and I_d are the fluorescence intensities of the donor with and without the acceptor, respectively; k^2 is a factor describing the relative orientation in space of the transition dipoles of donor and acceptor. In solutions of low viscosity, where rotation of the donor and the acceptor is sufficiently fast, an average value of $k^2 = 2/3$ may be assumed [15, 16]; φ_d is the fluorescence quantum yield of the donor (OF) in the absence of acceptor, which is determined based on the reference method with quinine sulfate as the criterion [17]; n is the refractive index of the medium and n = 1.336; J is the spectral overlap integral between the emission spectrum of donor and the absorption spectrum of acceptor. $F(\lambda)$ and $\varepsilon(\lambda)$ are the fluorescence intensity of the fluorescence donor (OF) and the molar absorption coefficient of the acceptor (Eu³⁺), respectively. The values of E_a , R_0 , and r are listed in Table 4.

From Table 4, it can be seen that in ternary complex of Eu^{3+} -OF-SDBS, the energy transfer efficiency is low. In the

Fig. 7 Emission spectra of the system. (1) OF–SDBS; (2) Eu^{3+} –OF–SDBS; (3) Gd³⁺–OF–SDBS; (4) Eu^{3+} –Gd³⁺–OF–SDBS. Conditions: pH = 7.8; OF: 7 × 10⁻⁵ mol·L⁻¹; SDBS: 3.6 × 10⁻⁴ mol·L⁻¹; Gd³⁺: 1.8 × 10⁻⁶ mol·L⁻¹; Eu³⁺: 1.0 × 10⁻⁷ mol·L⁻¹

Table 4 The efficiency of energy transfer (E_a) and the critical transfer radius (R_o)

System	Donor	Acceptor	$E_{\rm a}$	$J (10^{-13} { m cm}^6 { m M}^{-1})$	R_0 (nm)	r (nm)
Eu ³⁺ –OF–SDBS	OF	Eu ³⁺	0.017	2.394	4.25	8.36
Eu ³⁺ -Gd ³⁺ -OF-SDBS	OF	Eu ³⁺	0.026	6.200	4.27	7.83

tetra complex of Eu^{3+} – Gd^{3+} –OF–SDBS, the energy transfer is more efficient than in ternary complex. It is considered that the distances between OF and Eu^{3+} in the tetra complex is decreased to 7.83 nm from 8.36 nm in ternary complex. Therefore, the energy transfer efficiency increases and the fluorescence intensity of Eu^{3+} is enhanced.

In the Gd³⁺–OF–SDBS system, the characteristic emission of Gd^{3+} is not observed. This is probably due to the fact that Gd³⁺ possesses a relatively stable half-full 4f shell and the luminescence level of Gd^{3+} is higher than the triplet state of OF–SDBS in the Gd^{3+} complex, so the energy absorbed by OF–SDBS can not be transferred to Gd^{3+} by the intra molecular energy transfer. It can be seen from Fig. 7 that when Gd³⁺ is added into Eu³⁺-OF-SDBS system the fluorescence of Eu^{3+} is greatly enhanced accordingly. Since the concentration of the Gd^{3+} complex is much greater than that of the Eu^{3+} complex and the distance between Gd^{3+} -OF-SDBS and Eu³⁺-OF-SDBS complexes is short enough, Eu³⁺ in the Eu³⁺–OF–SDBS can accept the energy from Gd³⁺–OF–SDBS through intermolecular energy transfer in this system, resulting in the enhanced fluorescence of Eu³⁺ compared to the system in the absence of Gd^{3+} .

It is found that when the concentration of Eu^{3+} is $1.9~\times~10^{-6}~\text{mol}\cdot\text{L}^{-1}$ in the Eu^3+–OF–SDBS system the fluorescence intensity of Eu^{3+} is still under that of Eu^{3+} -Gd³⁺-OF-SDBS (the sum concentration of Eu³⁺ and Gd³⁺ is $1.9 \times 10^{-6} \text{ mol} \cdot \text{L}^{-1}$). This result shows that there are another factor improved the fluorescence intensity of Eu³⁺-Gd³⁺–OF–SDBS along with the intra and inter molecular energy transfer. It is asserted that in the Eu³⁺-Gd³⁺-OF-SDBS system, the concentration of the Gd^{3+} complex is much higher than that of the Eu³⁺ complex; each of Eu³⁺-OF-SDBS complex molecule is surrounded by many Gd³⁺-OF-SDBS complex molecules. This surrounding complex could act as an energy-insulating sheath, which could prevent collision with water molecules and decrease the energy loss of Eu³⁺–OF–SDBS complex, thus improving the fluorescence quantum yield and the fluorescence intensity of Eu^{3+} enhanced.

On the basis of the results above mentioned, the conclusion for the fluorescence enhancement of the system comprises two effects: one is the intramolecular energy transfer from OF to Eu^{3+} in Eu^{3+} –OF–SDBS system and the intermolecular energy transfer from Gd^{3+} –OF–SDBS to Eu^{3+} –OF–SDBS; the other is that the increasing of the fluorescence quantum yield of Eu^{3+} .

Fig. 8 The effect of the ionic strength on the fluorescence intensity. Conditions: pH = 7.8; OF: $7 \times 10^{-5} \text{ mol} \cdot L^{-1}$; SDBS: 3.6 $\times 10^{-4} \text{ mol} \cdot L^{-1}$; Gd³⁺: 1.8 $\times 10^{-6} \text{ mol} \cdot L^{-1}$; Eu³⁺: 1.0 $\times 10^{-7} \text{ mol} \cdot L^{-1}$

The effect of the ionic strength

The influence of ionic strength on the fluorescence intensity of this system is tested as shown in Fig. 8. Experiments indicate that the fluorescence intensity of the system has obvious decreased when NaCl is added into the system. So, it is assumed that the interaction of Gd^{3+} or Eu^{3+} and OF– SDBS in this system forming the ternary complex is through electric attraction. At high concentration of salt, the fluorescence of this system decreased because charges could be screened and the interaction via electric attraction will be weakened.

Conclusion

In this paper, a new co-luminescence system $Eu^{3+}-Gd^{3+}-OF-SDBS$ is found. Based on it, a method is established to determine Eu^{3+} sensitively and its detection limit reached as low as 1.46×10^{-10} mol·L⁻¹. The interaction mechanism of this system is studied. In $Eu^{3+}-Gd^{3+}-OF-SDBS$ system, it is considered that there existed simultaneously two complexes: $Eu^{3+}-OF-SDBS$ and $Gd^{3+}-OF-SDBS$. Because of the self-aggregation of SDBS, these two complexes are close to one another to form large complexes. Thus, intermolecular energy transfer is possible to enhance the fluorescence of Eu^{3+} through accepting energy from the $Gd^{3+}-OF-SDBS$ besides of the intra molecule energy transfer from OF to

 Eu^{3+} in the complex of Eu^{3+} –OF–SDBS. In addition, large numbers of complexes of Gd^{3+} surrounded the complex of Eu^{3+} to form an energy-insulating sheath, resulting in the prevention of collision with water molecules. Thus, the fluorescence quantum yield is improved and fluorescence of Eu^{3+} is significantly enhanced.

References

- 1. Yang JH, Ge W, Zhu GY (1986) J Shandong Univ 21(2):88-94
- Yang JH, Zhu GY, Wu B (1987) Enhanced luminescence of the europium/terbium/ thenoyltrifluoroacetone/1, 10phenanthroline/surfactant system, and its analytical application. Anal Chim Acta 198:287–292
- 3. Yang W, Mo ZL, Teng XL, Chen M (1998) Determination of trace europium based on new ternary fluorimetric enhancement system of europium(III) with thenoyltrifluoroacetone and trisalicylicamido triethylamine. Analyst 123:1745–1748
- Hu LX, Li JP, Song GW, Duan NJ (1996) The system of Eu(III)-Gd(III)-DBM-Triethanolamine-CPB. Chinese J Anal Chem 24(10):1237
- Yang JH, Ge HM, Jie NQ, Ren XZ, Zou HB (1994) The luminescence system of yttrium(III)–BPMPHD–CTMAB and the determination of yttrium(III). Talanta 41(12):2055–2060
- Tong CL, Zhu Y, Liu W (2001) Study on the co-luminescence system of Dy–Gd-1,6-bis(1-phenyl-3-methyl-5-pyrazol-4-one) hexanedione–cetyltrimethylammonium bromide and its analytical application. Analyst 126(7):1168–1171

- Li L, Yang JH, Wu X, Sun CX, Liu Y, Liu SF, Su BY (2004) Analysis of guanosine-5'-monophosphate at nm level based on the co-luminescence effect of Tb–Gd–GMP system. J Luminescence 109(1):31–37
- Liu SF, Yang JH, Wu X, Su BY, Sun CX, Wang F (2004) Analysis of tryptophan at nmol l⁻¹ level based on the fluorescence enhancement of terbium–gadolinium–tryptophan–sodium dodecyl benzene sulfonate system. Talanta 64(2):387–394
- Panigrahi BS (1999) Fluorescence and cofluorescence enhancement of Tb³⁺ and Eu³⁺ using phenyl phosphonic and phenyl phosphinic acids as ligands. J Luminescence 82:121–127
- Wu X, Wang YB, Yang JH, Sun SN (2004) Enhanced fluorescence of Eu–Gd–oxolinic acid–CTMAB system and its application to the determination of europium (III) at ultra-trace amount. Anal Lett 37(13):2739–2752
- Directors of the American Society of Hospital Pharmacists, Drug information 88, Bethesda M D, USA, 1988, pp. 415–420
- Proceedings of the World Health Organisation Meeting on Use of Quinolones in Food Animals and Potential Impact on Human Health, Geneva, Switzerland, 1998
- Clegg RM (1995) Fluorescence resonance energy transfer. Curr Opin Biotech 6(1):103–110
- Kumar GA, Unnikrishnan NV (2001) Energy transfer and optical gain studies of FDS: Rh B dye mixture investigated under cw laser excitation. J Photochem Photobiol A 144(2–3):107–117
- Dexter DL (1953) A theory of sensitized luminescence in solids. J Chem Phys 21:836–850
- Eisenthal KB, Siegel S (1964) Influence of resonance transfer on luminescence decay. J Chem Phys 41:652–655
- Chen GZ (1990) Fluorescence analytical methods. Science Press, Beijing, pp 16–17